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Abstract—Subject of the investigation is the stress distribution and the dynamic stress concentration factor
at the surface of a semi-circular cavity in a half space excited by plane harmonic SH waves. Using wave
function expansion for the incident wave and the reflected waves, a closed form solution is obtained.
Numerical results are represented graphically.

INTRODUCTION

As reviewed in a recent monograph[1], the determination of dynamic stress concentrations in
solids is of primary importance in the study of dynamic strength of materials with in-
homogeneity, and in the design of underground structures subject to ground blasting waves.
Because of the difficulty in analysis, most known results are confined to inhomogeneities, like a
cavity or a rigid insert, in an infinite space. Physically, this means that if, besides the
inhomogeneity, there exists a bounding surface, the effect of the waves reflected from the
bounding surface is neglected. This omittance is justifiable when the bounding surface is at a
large distance from the inhomogeneity. For the case of a half space with a cavity on the surface
as considered in this paper, the effect of scattering of waves by the cavity surface, and the
effect of reflection from the plane boundary may be of equal importance, and they must be
considered simultaneously.

Exact solutions for the scattering of elastic waves by a surface cavity of any shape on a
semi-infinite solid are difficult to find. The only known results are the scattering of SH waves by
a semi-circular elastic cylinder[2, 3], or a half elliptical rigid cylinder[4). The former includes
the case of a rigid circular cylinder as first obtained by Luco([5]. In this paper, we investigate
the case of a semi-circular cylindrical cavity in detail.

The solution is derived by the method of series expansion in terms of wave functions in polar
coordinates (see [1], Chaps. 2 and 3). The exact series solution can be evaluated numerically with
great accuracy for the case of an incident wave with wave length not too small.

For the purpose of understanding the effect of the plane boundary on the stress concen-
trations, we calculated the dynamic stresses at the surface of the cavity due to an incident plane
harmonic SH wave. As expected, a change of the angle of emergence, y, which ranges from 0 to
w2 alters significantly the dynamic stress concentrations. The case of grazing incidence (y = 0)
where the direction of the wave normal is parallel to the plane boundary is the same as the case
of a circular cylindrical cavity in an infinite space with the same incident wave. The case of
normal incidence (y = 7/2) where the propagation vector is perpendicular to the plane differs
significantly from the case of grazing incidence. For oblique incidence, the dynamic stress
concentration at high frequencies may be higher than that at low frequencies. This result is
unexpected and merits further consideration in the study of transient waves.

SERIES SOLUTION IN WAVE FUNCTIONS

Consider the propagation of a horizontally polarized shear wave (SH wave) in a half space
the plane boundary of which is the z —x coordinate plane (Fig. 1). The displacement w of
simple harmonic waves with a time factor exp (—iwt) satisfies the two dimensional scalar wave
equation

(V+k)w(x, y) =0 (n
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where the wave number k = w/c, and w is the circular frequency, and ¢ the shear wave speed.
The non vanishing stress components are

ow ow
arxz=u5;, a'yz=p.-a? 2)

where w is the shear modulus of the material. In polar coordinates (r, 8),

Iw 1w
Urz::ﬂ‘a_r, Tz = ;%~ (3)

For a traction free boundary (y = 0), the incident wave, w', and the reflected wave, w'”,
may be represented by

@)gr)

w” = w, exp [ik(x cos y = y sin y)] 4

where w, indicates the displacement amplitude, and vy is the angle of emergence (Fig. 1). The
resultant wave in the half space is

w+w® = 2wo cos (ky sin y) e™* = (5)
or in polar coordinates,
(i) )y __ S n
W@+ w® =2wo D, &i"J.(kr) cos ny cos né. (6)
n=0

The above result can easily be derived by first noting that x cos y =y siny = r cos (6 = v), and
then applying the expansion formula for each of the plane waves in (4) into a series of wave
functions (1). The €. in (6) equals 1 when n =0, and equals 2 when n =1, 2, 3 ... J.(kr) is the
Bessel function of the first kind.

With a semi-circular cavity of radius a in the half space, the incident wave is further
scattered by the cavity. We represent the scattered waves by

w® =2wo 2, AuHa(kr) cos nd ™

n=0

where H.(kr)=J.(kr)+iY.(kr) is the Hankel function of the first kind. The unknown co-
efficients A, are determined from the boundary condition

0.=0 at r=a @®)
The total wave in the half space with a cavity is
w=w"+w"+w" 9)
and the boundary condition (8) is satisfied if

A, = —€&i"[J(ka)/H (ka)] cos ny (10)

Incident
Wave

Fig. 1. Half space with semi-circular cavity.
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where a prime denotes differentiation with respect to the argument. The complete solution is
given by the sum of (5) and (7) while A, is given by (10).

DYNAMIC STRESS COMCENTRATIONS

For the investigation of stress concentration, we evaluate the shear stress
ge. at the boundary r = a according to

£

To:

2. _ Jilka) ] i
T o 2 [],.(kr) H,’.(ka)H"(kr) cos ny sin nf (1D

with go = ukws. Since g,. = 0 at r = q, the absolute value |os.(a, 8)| is the largest principal stress
at the cavity surface in one complete cycle of the incident wave.

Substituting the Bessel functions by their asymptotic formulae for small argument ka (see,
e.g. [5]), one obtains

l&l=2c05113in 0. (12)
20’0

In a polar coordinate system (|os:|/20%, 8), this function is a circle of diameter 2 cos y. ka =0
means either static limit, i.e. infinite wave length, or an infinitesimal notch. (In Figs. 2 and 3,
these circles have been omitted for the sake of clarity.)

To compare o.(a, ) with the principal stresses at the corresponding points (a, §) in the
absence of a cavity we must restore the time factor exp (—iwt) in (5). According to (2), the
stresses at every point (x, y) due to the combined incident and reflected waves are

(i+r) =

Ox: — 204 c0s y cos (ky sin ) sin (kx cos y — wt), (13)

Gi+r)

Oys — 200 sin v sin (ky sin y) cos (kx cos y — wt).

Fig. 2. Nondimensional stress amplitude as a function of the angle of observation.
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Fig. 3. Nondimensional stress amplitude as a function of the angle of observation.

During one complete cycle 2@/w of wave motion, the peak values of these two stresses do not
occur at the same instant. Note that when all the stress components but .. and o,. vanish, two
of the principal stresses are *o, and the third equals zero, where

o=(0n+o)" (14)

Thus, in one complete cycle, the omax in the undisturbed medium (half space without cavity)
may be either o, or o, where

a1 =200 c0s y cos (ky sin vy), (15)

o2 =206 sin vy sin (ky sin y).

Their magnitudes depend on the location y, wave length 2a/k, and the angle of emergence v.
We now define the dynamic stress concentration factor (DSCF) as

DSCF: (Tez(a, 0)' (]6)

ox,z(a, 0)

where o is given by (15) with y = a sin 6. The larger of the two stresses, o, and o, should be
used to calculate the DSCF. When y =0, the DSCF for the half space with a semi-circular
cylinder is the same as that for an infinite space with a complete cylindrical hole under the
influence of a plane SH wave. The case of y = «/2 gives rise to a maximum stress o> = 200
sin ky in the undisturbed half space. At the nodal lines y = nw/k (n =0,1,2...) resulting from
the interference of the incident and reflected waves, o> = 0. However, |os.| at the same location
of the half space with a cavity does not always vanish on account of the additional interference
with the scattered waves, and the ratio |os.})/c.— ®. Since this result is misleading we shall not
define the DSCF for the case of y = w/2 (normal incidence).

RESULTS
The distributions of |o..!/200 as functions of 6 are shown for kg = 0.1, 1, 2 for y = 0 and 30°
in Fig. 2, and for y = 60 and 90° in Fig. 3. The curve for ka = 0.1 has been omitted in the lower
half of Fig. 3 (y =90°). Also as functions of 6, Figs. 4 and 5 exhibit |v.|/20, for ka = 10 with
parameters y = 0 and 30°, or y = 60 and 90°, respectively. Variations of |0s.|/200 as continuous
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Fig. 4. Nondimensional stress amplitude plotted vs the angle of observation.

Fig. 5. Nondimensional stress amplitude plotted vs the angle of observation.

Fig. 6. Nondimensional stress amplitude plotted vs the nondimensional wave number.
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functions of ka are shown in Figs. 6-8 for the angles of emergence y =0, 30, 60°, respectively,
and the angles of observation 8 = 30, 60, 90, 120, 150° as parameters. In Fig. 7 (y = 30°), the
angle of observation 6 = 175° has been added. In Fig. 9, stress is represented for y = 90° and
6 =30 and 60°.

The curves for y =0° in Fig. 2 are known from the case of infinite space with circular
cylinder[1]. Very similar to them are the curves for y = 30° presented in the upper half of Fig.
2. Figure 3 exhibits the interesting fact that dynamic stress (ka =2) is essentially larger than
static stress in the shadow zone as well as in the illuminated region. In the y = 90° case, there
does not exist a limit ka —» 0. Figure 5 shows very high dynamic stresses (ka = 10) for y = 60° at
the angle 8 =~ 170°, and for y = 90° at the angles 6 = 10° and 8 =~ 170°.

Fig. 7. Nondimensional stress amplitude plotted vs the nondimensional wave number.

I6al _yiﬁQ
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Fig. 8. Nondimensional stress amplitude plotted vs the nondimensional wave number.
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Fig. 9. Nondimensional stress amplitude plotted vs the nondimensional wave number.
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Fig. 10. Nondimensional stress amplitude and dynamic stress concentration factor plotted vs the nondi-
mensional wave number.

Figure 6 shows the well known fact of stress becoming smaller with increasing frequency in
the shadow zone; there is no influence of the free surface of the half space. Figure 7 shows
considerable re-increases after previous decreases. For 8 =175°, in the range under con-
sideration, after a small decrease, the stress increases monotonously with ka. The most striking
feature in Fig. 8 is the observation that, for 8 = 150°, the second peak exceeds the first one.

As an example for the DSCF, Fig. 10 shows this quantity, and in a twice as large scale, the
non dimensional stress as a function of ka for y = 30° and 6 = 30°. The corners in the DSCF
stem from the fact that, as mentioned, in calculating the DSCF according to the definition (16),
the larger of the two stresses (15) has to be inserted. At the angle of observation ¢ = 30°, for
ka =4.2, the principal stress in the half space with cavity is 26% larger than the cor-
responding stress in the undisturbed half space.
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